
Chapter 7

Experimental Design

This chapter focuses on how to design experiments. We bring the assumptions we’ve learned
into play and discuss key ideas and principles of good experimental design. Good design con-
cepts are best illustrated by examples, so we provide many in this chapter, mostly involving
clinical trials or improving education in developing countries.

� 7.1 Core elements of good design

While experimental design is a broad topic that is often difficult to get right, there are a few
guiding principles that all good designs are built on top of:

1. Replication: Any good experiment should be reproducible, and in particular, repli-
cation should yield similar results. Shockingly, many published scientific papers fail at
this tenet!1 Meanwhile, anecdotal evidence is not scientific proof, and we’ve seen so
far that most of the methods we’ve discussed improve as the number of samples in-
creases. This is often difficult to achieve because of cost or time constraints in a study:
while gathering an infinite amount of data might be theoretically ideal, it’s practically
impossible.

2. Comparison/control/baseline: In any experiment where you’re measuring the ef-
fect of a treatment, it’s impossible to assess that effect without having a reference
value.

For example, a remedial summer program in a poor school district might result in
little to no improvement in student performance between the beginning and end of the
summer. But what would have happened if we hadn’t intervened? In disadvantaged
schools, academic performance can sometimes decline over the summer – in this case,
our intervention would be classified as an improvement!

As another example, when an experimental medical treatment undergoes clinical trials,
it is standard to compare the treatment against a placebo, which refers to a sham
treatment that is advertised as effective. In these trials, the goal is to show that the
experimental treatment significantly outperforms the placebo. The exception to using
a placebo in these cases is when the disease is extremely debilitating where it makes

1See The Economist, “Unreliable research: trouble at the lab”, October 19, 2013.
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sense to compare against a standard treatment currently in use (but that perhaps isn’t
very effective) rather than a placebo. Despite a placebo being a sham treatment, it
can often actually make a subject feel better compared to not giving any treatment at
all! This is explained in the next example panel.

Example: The Placebo and Hawthorne Effects

Beware the placebo effect! When you apply a treatment to a subject, that treatment may be
ineffective, but can still produce a significant effect simply due to the existence of the treatment.
For example, a fake placebo surgery can actually do as well as a common knee surgery!a And
giving people nonalcoholic drinks but telling them that the drinks are alcoholic can result in a
decline in memory powers!b

Because of the placebo effect, development of medical treatments demands the stronger standard
of outperforming a placebo rather than outperforming not giving any treatment at all since a
placebo alone could already result in a startling improvement in a test subject’s condition, often
largely due to psychological factors.

To examine the benefit of a placebo, an experiment could have a control group that receives no
treatment, a placebo group that receives a sham treatment, and a treatment group that recieves
the actual treatment under study. By doing this, the experimenter can measure both the effect
of the placebo over the baseline and the effect of the treatment over the placebo.

Closely related to the placebo effect is the Hawthorne effect: in a behavioral study, the behavior
of subjects might be due to their reaction to being studied. In a famous experiment in the early
20th century, a factory called the Hawthorne Works wanted to measure the effect of lighting
on productivity. An experimental group had their light bulbs changed, and the experimenters
wanted to measure the effect on productivity. A control group saw workers change their bulbs,
but the new bulbs were identical to the old ones. However, both groups improved after the “new”
bulbs were put in: the control group improved purely due to their perception of an effect.

These effects can turn up where you least expect them to! For example, suppose you’re designing
an experiment to measure the effect of fertilizers on a farm. While the plants probably aren’t
vulnerable to the placebo effect, the farmers could be. A farmer whose field is fertilized might
work harder and be more motivated simply by being part of the study. As a result, in such a
study, it might be a good idea to have a placebo farm that receives plain dirt. There are also
other confounding factors: seemingly uninteresting quantities such as the overall moisture level
of the fertilizer may have an impact on the result, so it’s important to make the placebo group
as equalized as possible!

aSee Baylor College Of Medicine, “Study Finds Common Knee Surgery No Better Than
Placebo,” ScienceDaily, July 12, 2002.

bSee BBC News, “Being drunk ‘a trick of the mind”’, January 7, 2003.

3. Blocking/controlling for confounds: In an experiment with possible external
sources of variability, it’s always best to control for these factors (recall Simpson’s
paradox from Chapter 5!). Controlling for confounds is best achieved through blocked
design, where we divide subjects into groups corresponding to levels of a confound-
ing factor, and repeat the experiment for each group. By accounting for the effect of
confounding variables, we can avoid being misled by our data.

For example, an educational intervention program may have different effects on stu-
dents of different gender. If we aren’t interested in the confounding effect of gender,
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then we can analyze the blocks separately or even include this confound in our analysis
(e.g., using ANCOVA).

4. Randomization: Most theoretical analysis assumes that data points are independent.
Randomization is often the key ingredient to satisfying this assumption! For example,
it’s better to have randomly selected data points, and to randomly assign those data
points to different groups/treatments, and so on. Skipping randomization can often
lead to bias in data!

A general rule of thumb, attributed to the famous statistician George Box, is to “block what
you can, randomize what you cannot.”

We’ll see concrete examples of how these principles come into play.

� 7.2 Gathering Samples

A critical part of any experiment is gathering samples or data points. In all of these examples,
we assume some underlying “population”. For example, if you’re conducting a poll for all of
the U.S., then your population could be all U.S. residents. If you’re studying the effect of
a new pilot bilingual immersion program at a high school, then your population would be
students from that high school.

Here are a few ways to gather data:

1. Simple Random Sample (SRS): In a simple random sample, we draw members
of the population uniformly at random without replacement. This is like putting the
names of everyone in the population into a hat and then drawing a few names out of
the hat, assuming of course that the drawing is fair. The “without replacement” part
just means that once a name has been drawn from the hat, we don’t put it back into
the hat. Effectively we can’t draw the same name twice. We’ll see in Section 7.3 that
an SRS consists of points that are not independent! However, if the number of data
points in the SRS is much smaller than the total population size, then we can safely
treat the samples as approximately independent.

Unfortunately, collecting an SRS is often difficult to carry out in practice: if we want
to randomly sample the population of people in New York City with landline phones,
then we can take a phonebook, choose names at random, and call them. But, if we’re
sampling the population of students in a developing country, it’s almost impossible to
find a list, let alone obtain access to people that are uniformly sampled.

Another issue with simple random samples is that it’s often difficult to make conclusions
about smaller subpopulations. For example, if a particular subgroup is relatively small,
a uniform sample may not capture any members of that group. For example, if we’re
trying to estimate the proportion of the population that has an extremely rare disease
(say, 1 in a million), then chances are that from sampling, say, 1000 people, none of
them are going to have the disease.
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2. Stratified Random Sample: (First off, by convention, the abbreviation “SRS” refers
to a simple random sample, and not a stratified random sample!) As for stratified
random samples: suppose we know that the population consists of several different
non-overlapping groups, and that there isn’t much variation within each group. Then
we can divide the population into these groups and within each group collect an SRS.
These groups are called strata, with each group called a stratum.

In a scheme known as proportional allocation, the number of subjects per stratum
is usually chosen to match that stratum’s true relative size in the population. For
example, if 60% of the population of interest is female, and we have two strata, one
per gender, then if we want our study to have a total of 1,000 people, proportional
allocation would ask that we collect two separate SRSs, one with 600 women and one
with 400 men.

In Neyman’s optimal allocation, the number of subjects per stratum is determined by
both the stratum’s true relative size in the population as well as the variance within
the stratum. If either the relative size of the stratum in the population is larger, or the
variance within the stratum is higher, then we’ll collect more samples from this stratum.
Formally, if W` is the true proportion of the population that is in stratum `, and σ` is
the true standard deviation within stratum `, then Neyman’s optimal allocation says
that the size of the SRS for stratum ` should be proportional to W`σ`.

This technique allows us to accurately measure the effects of small groups that may have
otherwise been missed in an SRS over the whole population (i.e., without stratification).
For example, we may want to sample the performance of students in different types
of schools. If some school categories are larger (i.e., have more students) than others,
then an SRS over the whole population may miss the small categories. A stratified
sample would list the categories and sample randomly within each type of school.

3. Cluster Sampling: The two methods above require samples from either the entire
population or every single stratum. This may not always be cost-effective or even
feasible. Cluster sampling is based on the idea of dividing the population into natural,
heterogeneous groups that are relatively similar to each other. Each group should be
well-representative of the population. Instead of sampling from all of the groups, we’ll
randomly sample a few, and then do random sampling within each one. Since they’re
all similar to each other, then a random sample from one should be representative of
a random sample of the population.

For example, if we’re polling a city, we might divide it up into city blocks. Then we
randomly choose some number of blocks to sample. Finally, within each block, we
collect an SRS. As long as there are no large differences between each block, and each
block represents the overall city population well, then this technique is often more
cost-effective than an SRS over the whole population.

However, all of these frameworks have issues:

• Getting an unbiased list of subjects to sample from, even within a stratum or a cluster,
can often be difficult.
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• We may have non-response bias : in a study of people such as a survey, there will
almost always be people who choose not to respond. Unfortunately, different groups
often have different non-response rates. For example, in an approval survey, more
enthusiastic people are more likely to respond to questions, which can bias the results
toward the extremes. As another example, a poll asking about the workload of students
may run into non-response bias where overworked students are too busy to respond
and, as a result, the collected responses may suggest that people work fewer hours than
they actually do on average.

• For surveys, how questions are worded can make a huge difference in how people
respond! We see this in the following example.

Example: Wording matters!

In October 2004, Stanley Presser ran a poll for The New Yorker, where half of respondents were
asked “Do you think the United States should allow public speeches against democracy?” and
the other half were asked the same question except with “allow” replaced by “forbid”. Whereas
56% answered no to “forbidding”, 39% answered yes to “allowing” despite the two answers
corresponding to the same response.

Generally speaking, it is a good idea to word questions as neutrally as possible, and if
the questions don’t have some order dependence, to randomize their ordering.

The above issues often make it hard to extend conclusions beyond a study: any analysis we
can do is only valid for the population that we sampled from. This is highlighted by the
following example, which led to the downfall of the magazine The Literary Digest.

Example: The Literary Digest poll for the 1936 US Presi-
dency

Republican candidate Alfred Landon was running against Democrat Franklin Delano Roosevelt. The
Literary Digest projected that Landon would win by a huge margin: a 57% to 43% victory. The maga-
zine had polled 10 million people and received a whopping 2.4 million responses! Yet Franklin Roosevelt
won by a landslide, carrying 46 states while Landon only carried 2 states. The win wasn’t just in the
electoral college either: Roosevelt won 61% of the popular vote.

What had happened? Of course, a mix of things happened including non-response bias and likely
wording issues, but the main issue was selection bias: the questionnaires were sent out to readers of The
Literary Digest, those that were in a phone listing, and those on a listing of car owners. But all these
lists contain more rich people than poor people, which led to a heavily skewed poll result.

In contrast, a Gallup poll that same year predicted that Roosevelt would receive 56% of the popular
vote using only a sample size of 50,000, which turned out to be far more accurate than The Literary
Digest’s poll results.
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� 7.3 Simple Random Samples: are samples really independent? (op-
tional)

Suppose we have a population of N people and we’re measuring their heights. Let the true
population mean height be µ with variance σ2. We draw a simple random sample (SRS) of
size n from the population. Let x1, x2, . . . , xn be the heights we measure of n people in the
SRS. Let the sample average height be

x̄ =
1

n

n∑
i=1

xi.

First off, note that the xi’s are not independent! The intuition is as follows. Let’s say the
first person we sample from the population is Alice, so x1 is Alice’s height. Since we are
sampling without replacement, the second height x2 cannot come from Alice! So how we
selected x1 affects how we select x2, which means they’re not completely independent. This
reasoning extends to all the xi’s.

The sample average (which, as a reminder, is a random variable) turns out to have mean
and variance given by

E[x̄] = µ,

var[x̄] =
σ2

n

(
N − n
N − 1

)
︸ ︷︷ ︸

correction factor

,

where we note that there is a correction factor due to the samples not being independent.

If n � N , then the correction factor is approximately 1, and furthermore, the samples can
be approximated as independent and as if they were drawn with replacement. The intuition
is that if we’re drawing n names from a hat of N names, and n� N , then even if each time
we draw a name, we put the name back into the hat, the chance of us drawing the same
name twice is negligible — whether we put the name back in the hat or not doesn’t really
affect the result!

Confidence intervals

For sufficiently large n, the sample average x̄ is approximately normal, but not because of
the central limit theorem which we saw earlier (recall that the theorem required that the
random variables we’re summing to be independent, which isn’t the case here). Instead,
one needs a fancier central limit theorem that tolerates some dependence between random
variables. In any case, the approximate normality of x̄ allows us to construct an approximate
confidence interval for µ.

As with our earlier excursions into computing confidence intervals, what we need is an
estimate of the standard error of our estimator x̄. It turns out that an unbiased estimator
for var[x̄] is:

s2

n

(
N − n
N

)
.
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Thus, an estimate of the standard error is

sµ =
s√
n

√
N − n
N

,

from which we derive a 95% confidence interval for the mean height µ:

x̄± 2sµ = x̄± 2
s√
n

√
N − n
N

.

As a reminder, the coefficient 2 comes from the fact that within 2 standard deviations of
a standard normal random variable lies 95% of the probability mass centered around the
mean.

If instead the xi’s had been binary random variables taken on values 0 or 1 (e.g., we ask each
of n people a yes/no question, where “yes” is encoded as a 1), then one could show that an
approximate 95% confidence interval is

x̄± 2

√
x̄(1− x̄)

n− 1
· N − n

N
,

where in this context, note that x̄ estimates the fraction of the population that has value 1
(e.g., the proportion of people who answer “yes” to a poll).

� 7.4 Some sample designs

This section covers more experimental designs that are useful for more complex experiments.

� 7.4.1 Paired tests and repeated measures

Whenever possible, if applying a treatment, it’s best to have paired data, where we obtain
measurements for each subject before and after treatment. As we saw with t-tests, paired
tests often give us the most power.

A generalization of paired tests is repeated measures design. In such a design, we may
have multiple (i.e., 2 or more) treatments, and each subject will receive all the treatments.
This way, each subject can be thought of as its own control.

For example, suppose we measure the effect of caffeine (in the form of tea and coffee) on
student performance. In a repeated measures design, each student would spend a month
drinking coffee, a month drinking tea, and a month with no caffeine intake (for control). We
may also want to add a month with a decaffeinated drink as a placebo. In such designs,
it’s important to randomize the order, and to be wary of temporal effects. In this example,
stopping caffeine treatment might lead to worse performance due to withdrawal. As a result,
it might be worthwhile to wait in between each “measure”. We can sometimes model these
temporal effects with autocorrelation models, where the errors are no longer assumed to be
independent, but rather to depend on each other in sequence.
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� 7.4.2 Randomized complete block design

What do we do when we have multiple factors to block on? If the factors don’t depend on
each other, then we’ll probably have the same number of sub-blocks with in each block. For
example, in an experiment where we block on gender and handedness (left or right), we’ll
have left-handed and right-handed groups for men, and left-handed and right-handed groups
for women. Such a design is called complete, because each sub-block is being tested. We’ll
focus here on cases where we have two blocking factors, although the ideas we’ll discuss can
be generalized. In a randomized complete block design, we may not have enough data points
to replicate within sub-blocks, so we must assign different sub-blocks to different treatment
conditions.

Example

For example, suppose we want to measure the effect of giving tablets to students in developing
countries. Our experimental condition might be providing students with tablets and giving
them an extra hour every day to use them. We would need a control group that receives the
normal curriculum, and a placebo group that receives an extra hour of unstructured time
(but no tablets) every day. This gives us three levels for the treatment factor: tablet (T),
unstructured hour (U), and control (C). Suppose this is a one-year study where we have
three terms (fall, spring, and summer), and three (mostly-similar) schools in which to run
the experiment. Such a setup is known as a row-column design, and the experimental
setup can be illustrated by the following table:

Time of year
Fall Spring Summer

Location
1
2
3

We’ll fill in each entry with the treatment we use for that setup. A first attempt at this
design (where T, U, and C stand for tablet, unstructured hour, and control respectively)
might look like this:

Time of year
Fall Spring Summer

Location
1 T U C
2 T U C
3 T U C

Unfortunately, this design does not properly take into account the time of year: if we were to
run the experiment and see a significant improvement from the tablets, it might have been
entirely due to the confounding effect of having the tablet conditions all in the fall! As a
result, our ideal design would have each condition appear exactly once per row and once per
column (like a Sudoku). Grids that satisfy constraints like this are called latin squares, and
we can produce one by taking the table above and shifting each row:
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Time of year
Fall Spring Summer

Location
1 T U C
2 C T U
3 U C T

This way, we’ll try each experimental condition in every location and during every time of
year.

Example: How hard is experimental design, really?

Let’s take a seemingly simple example, and see how complicated things can get. Suppose we want to
bake the best possible loaf of bread. After some preliminary experimentation, we come up with 2 brands
of flour, 2 brands of yeast, and 3 oven temperatures, and want to find the optimal combination (out
of the 12 possibilities). We find 5 volunteer chefs willing to bake the bread, and 20 volunteer tasters
willing to help us evaluate how good it tastes.

Exercise : How would you design an experiment to find the best combination of conditions?

Exercise : Suppose you have each chef bake each of the 12 loaves 4 times (to do this, you’d probably
have to upgrade them from volunteeres to paid experimenters!). What are sources of variability within

(a) one loaf of bread?

(b) two loaves with the same recipe and ingredients from the same chef?

(c) two loaves with the same recipe and ingredients from different chefs?

How might you account for these sources of variability?
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