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Reading CSV (or any text tabulated) data
data.table is a package that extends the data.frame object of base R. It comes with its own functions to read 
(fread) and write (fwrite) tabulated data. Those replacement functions for read.table and write.table 
are incredibly easy to use and time/memory efficient.
# install.packages("data.table") # If the library data.table is not installed

# Loading data.table library
library(data.table)

# Reading the data and storing them in a data.table object
# stringsAsFactors = TRUE is used to transform 'chr' data into factors
# this is a good practice when 'chr' data are actually experimental modalities
d <- fread(input = "data_phototropisme_s1.csv", stringsAsFactors = TRUE)

# The npa column is also an experimental modality but because it contains numbers
# it was not converted into 'factors' by stringAsFactors. So let's do it.
d$npa <- factor(d$npa)

# Have a look at the data object
# d

fread is able (most of the time) to automatically identify the type and the layout of your data (separators,
headers, . . . ). If your data are encoded with a decimal separator other than the ., it is necessary to set
the dec argument of fread: d <- fread(input = "data_phototropisme_s1.csv", stringsAsFactors =
TRUE, dec=",").

Let’s have a look at the data
Before going further, it is a good practice to have a global look at the dataset to check for any problems or
inconsistencies. Let’s use ggplot2 for this task. Before you start coding, you should answer a few questions
that will help you produce a correct graph:

1. What data do you want to analyse ? In other words, the ones that will be plotted on the ‘y’ axis ? In
this case, it is the angle column.

2. How many experimental modalities must be distinguished on the graph ? We have 5 experimental
factors in total: geno, light, repl, timeref and npa, but on one single plot it will not be so easy to
consider more than 2 factors. Let’s start with the idea that we will split the geno data on the ‘x’ axis
and that we will give different colors for the light treatments. We will then separate the timerefon
2 graphs. For this first overview of the data, we will not deal with repl (replicates A and B) or npa.
Those data will be plotted (because we did not filter them out) but confounded in each geno~light
series.
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# install.packages("ggplot2") # If the library is not already installed
library(ggplot2)

# the function ggplot() accepts several arguments:
# data: the data.table (or dataframe) object
# mapping: inside aes() you should at least mention x and y data (for 2D graphs)
# depending on the type of plot other parameters can be set such as `fill`or `color`
#
# Here we plot angle (y) vs geno (x) and use 'fill' to color series depending on the light treatment
# we create a ggplot object (here 'g')
g <- ggplot(data = d, mapping = aes(x = geno, y = angle, fill = light))
g + geom_boxplot()
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Nice (preliminary) result but remember that, at this stage, data fro both timeref are confounded in each
geno~light series. So let’s split the results in 2 graphs, one for the data ‘before’ the onset of the light stimulus
and another one for the data ‘after’ the treatment.
g + geom_boxplot() + facet_grid(cols = vars(timeref))
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This data overview helps to highlight some potential issues with the dataset that should be addressed before
going further. Considering the experimental design, we expect the angle values to be around 90° for plants
growing upwards (the ‘normal’ situation) and tend to 0° if they grow perfectly horizontally towards the lateral
light source.

We observe on the ‘before’ panel that most of the series are, as expected, mostly growing upwards: the
values are distributed around 90° with a limited spread, excepted for a few outliers (the black dots). The
most extreme outliers (those above 150° or below 50°) should be investigated because they could be due to
measurement mistakes or sample problems. If justified, those values should be excluded. It is noteworthy
that the series WT in blue light is showing a large initial spread of the angle values. This is not expected
because all WT series have just, at this stage, experienced the same conditions. We should check if something
goes with one or the other replicates for this series.

For the same reasons, on the ‘after’ panel the values above 150° should be investigated and excluded if
justified.

Filtering and manipulating data
data.table makes the filtering and manipulation of data very easy. We will first illustrate how it works by
filtering the data to check for (and possibly remove) the anomalies highlighted above.

The data.table object comes with built-in aggregative capabilities (via the by keyword). A picture is worth
a thousand words. . .

Figure 1: The data.table general form (from https://github.com/Rdatatable/data.table/wiki)

Row filtering

The basic row filtering is similar to the data.frame method, except that column names can be used as
variables .

As a first example, suppose we want to filter out the angle values greater than 150°:
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# The data.frame version
# data[data$angle <= 150,]

# The data.table version
d[angle <= 150]

# Note that with `data.table` the ',' delimiting the *x,y* (or *i,j*) dimensions
# of the table can be omitted when *j* is empty (meaning you want to return all
# the columns without further manipulation).

It is of course possible to make complex filtering using conditions involving multiple columns:
# Filtering the rows containing data for WT exposed to blue light
# & is the logical operator AND
f1 <- d[geno == "wt" & light == "B"]

# Let's plot the result to check the data
# since we fixed geno and light, we can evaluate the 2 other factors: timeref and repl
g1 <- ggplot(data = f1, mapping = aes(x = timeref, y = angle, fill = repl))
g1 + geom_boxplot()
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From this graph, it is clear that something went wrong with the replicate ‘A’ which shows an unexpected
wide spread of the data, while the ‘B’ replicate shows the expected data for plants grown in the dark. It is
safe to remove this replicate from the dataset.
# First, check the conditions that select the targeted rows
# d[geno == "wt" & light == "B" & repl == "A" & timeref == "before"]
# Then, use !(...) to inverse the filtering
f2 <- d[!(geno == "wt" & light == "B" & repl == "A" & timeref == "before")]

# Make a plot to check the result
g2 <- ggplot(data = f2, mapping = aes(x = geno, y = angle, fill = light))
g2 + geom_boxplot() + facet_grid(cols = vars(timeref))
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That’s better. So, now, let’s focus on the ‘after’ time series, and compare the replicates for each series.
# Starting with the filtered f2 data.table, we filter out the 'before' data
# Since we want to compare the replicates, we will make one graph by genotype
# and use the light treatement as the 'x' axis and the replicate as the color
f3 <- f2[timeref == "after"]

g3 <- ggplot(data = f3, mapping = aes(x = light, y = angle, fill = repl))
# g3 + geom_boxplot() + facet_grid(cols = vars(geno))

We could highlight a few conditions were the replicates show differences but nothing clear enough to filter
out any series without a deeper analysis of the raw data (and probably the pictures themselves). However, if
the objective is to produce bar plots with means and standard deviations, we should be careful with outliers
such as those we observe for the WT & red light series. Two values close to 180° are clearly weird since the
other values for this series are spread around 40°. So, we should filter them out.
# First check the conditions that select the outliers
# f2[timeref == "after" & geno == "wt" & light == "R" & angle > 150]
# Then, filter them out
filtered_data <- f2[!(timeref == "after" & geno == "wt" & light == "R" & angle > 150)]

# Check the result
g4 <- ggplot(data = filtered_data[timeref == "after"],

mapping = aes(x = light, y = angle, fill = repl))
# g4 + geom_boxplot() + facet_grid(cols = vars(geno))

Better graphs by ordering the factors

On the previous plots, you may have noticed that the series are plotted in alphabetical order: from left to
right, the genotypes are phot, phya, phyb and wt and the light are B, D, R and W. This is not the best way
to present the result because you should always organise the graphs from the left to the right, starting with
the control conditions, because they are the obvious starting point of any comparison we want to make.
# You re-order the factor by using the factor function and giving to its levels argument
# a vector of values in the order you want (make sure to use the actual spelling of the factors)
filtered_data$geno <- factor(x = filtered_data$geno,

levels = c("wt","phot","phya","phyb"))
filtered_data$light <- factor(x = filtered_data$light,
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levels = c("D","W","B","R"))
filtered_data$timeref <- factor(x = filtered_data$timeref,

levels = c("before", "after"))

# check the result (compare with g4)
g5 <- ggplot(data = filtered_data[timeref == "after"], mapping = aes(x = light, y = angle, fill = repl)) 
# g5 + geom_boxplot() + facet_grid(cols = vars(geno))

Data manipulation

Now that we have cleaned and ordered our data, let’s focus on one analysis: the impact of npa (an inhibitor
of auxin transport) on the phototropism. So, first, we select the corresponding data, i.e. WT in dark or
lateral white light, with or without npa and at both time points.
npa_data <- filtered_data[geno == "wt" & light %in% c("W", "D")]

# A quick glance at the results
g6 <- ggplot(data = npa_data, mapping = aes(x = light, y = angle, fill = npa))
g6 + geom_boxplot() + facet_grid(cols = vars(timeref))
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Looking at the ‘after’ panel, the result is quite clear and using boxplot seems perfectly suited, but for the
purpose of learning data manipulation with data.table we will calculate means and standard deviations and
plot the resulting data with a bar plot.

The j placeholder of the data.table object make possible direct manipulation of data by using column names
as variables.
# Note the ',' indicating that the first position 'i' is empty, i.e. no filtering.
npa_data[, mean(angle)]

The j placeholder accepts a list of arguments, making possible multiple and simultaneous data manipulations.
# npa_data[, list(mean(angle), sd(angle))]
# The same with direct renaming of the new columns
npa_data[, list(mean=mean(angle), sd=sd(angle))]

This is not what we want, since we need to calculate mean and standard deviation for each experimental series
(light * npa). One option would be to use the i placeholder to filter the data and make multiple independent
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(manual) calculations:
# Bad example !!!
npa_data[light == "D" & npa == 0, list(mean=mean(angle), sd=sd(angle))]
npa_data[light == "D" & npa == 5, list(mean=mean(angle), sd=sd(angle))]
# ...

That’s not the good way (neither straightforward) of doing it. You should rather us the third placeholder of
the data.table object, by, to aggregate data before the calculation at the j placeholder is done. by accepts as
an argument a list of one or more column names.
npa_data[, list(n=length(angle), mean=mean(angle), sd=sd(angle)), by=list(npa, light)]

## npa light n mean sd
## 1: 0 W 68 63.73974 27.31103
## 2: 5 W 60 90.49246 16.56949
## 3: 0 D 60 90.43083 13.72857
## 4: 5 D 58 95.42534 17.06773

‘On place’ update of data.table objects

The := operator can be used at the j placeholder to add, remove and update columns by reference. For
example, if you want to transform, in place, the angle values to make 0° the upward direction and -90° the
right direction, you should do:
npa_data[, angle := angle-90]

Note that, by using the := operator, you modify your original data.table object. . . even if you do not use
explicitely the <- assignement operator, like in npa_data <- npa_data[, angle := angle-90].

This operator can also be used to add a new column or remove an existing column:
# re-create the npa_data object since the previous command modified it
npa_data <- filtered_data[geno == "wt" & light %in% c("W", "D")]
# add a column with radian values
npa_data[, angle2 := angle-90]
# optionnaly remove the angle column
# data[, angle := NULL]

or in one operation:
# re-create the npa_data object since the previous command modified it
npa_data <- filtered_data[geno == "wt" & light %in% c("W", "D")]

npa_data[, c("angle2", "angle") := list(angle-90, NULL)]
# equivalent to
# npa_data[, `:=` (angle = angle-90, angle = NULL)])

# A quick glance at the results
g7 <- ggplot(data = npa_data, mapping = aes(x = light, y = angle2, fill = npa))
g7 + geom_boxplot() + facet_grid(cols = vars(timeref))
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Let’s use this new angle2 data to calculate means and standard deviations and produce a bar plot.
# We limit the plot to the 'after' time series
summary <- npa_data[timeref == "after",

list(n=length(angle2), mean=mean(angle2), sd=sd(angle2)),
by=list(npa, light)]

g8 <- ggplot(data = summary, mapping = aes(x = light, y = mean, fill = npa))
# g8 + geom_col()

# By default, multiple bars occupying the same x position will be stacked atop one another by position_stack().
# If you want them to be dodged side-to-side, use position_dodge() or position_dodge2().
# Finally, position_fill() shows relative proportions at each x by stacking the bars and
# then standardising each bar to have the same height.

g8 + geom_col(position= position_dodge())
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Now, let’s improve the plot by adding/updating key elements

1. Add error bars
# Note the use of position_dodge() also with geom_errorbar to correctly position the error bars
# g8 + geom_col(position= position_dodge()) +
# geom_errorbar(mapping = aes(ymin = mean-sd, ymax=mean+sd), position = position_dodge())

# Controlling the width of the error bars and the centering on the bars
# g8 + geom_col(position= position_dodge()) +
# geom_errorbar(mapping = aes(ymin = mean-sd, ymax=mean+sd, width = 0.25), 
position = position_dodge(0.9))
# It would be better to plot only one side of the error bars, but it required to precompute ymax
# So let's update the summary table
summary[mean < 0, ymax := mean-sd]
summary[mean >= 0, ymax := mean+sd]
# or in one operation
summary[, ymax := ifelse(mean < 0, mean-sd, mean+sd)]

# use it to plot the well oriented half of the error bar
g8 + geom_col(position= position_dodge(), colour = "black") +

geom_errorbar(mapping = aes(ymin = mean, ymax=ymax, width = 0.25),
position = position_dodge(0.9))

# but remember that, in my opinion, the boxplot is much more suited here.

2. Update axis titles
# Note the use of \n to make a new line
g8 + geom_col(position= position_dodge(), colour = "black") +

geom_errorbar(mapping = aes(ymin = mean, ymax=ymax, width = 0.25), position = position_dodge(0.9)) + 
xlab("Light condition") +
ylab("Hypocotyl orientation (°)\n relative to upward direction (0°)")

2. Update axis and tick labels
# Note the use of \n to make a new line
g8 + geom_col(position= position_dodge(), colour = "black") +

geom_errorbar(mapping = aes(ymin = mean, ymax=ymax, width = 0.25), position = position_dodge(0.9)) + 
xlab("Light condition") +
ylab("Hypocotyl orientation (°)\n relative to upward direction (0°)") +
scale_y_continuous(breaks = c(30, 0, -30, -60, -90)) +
scale_x_discrete(labels = c("Dark", "Lateral white light"))

3. Improve the legend
# Note the use of \n to make a new line
g8 + geom_col(position= position_dodge(), colour = "black") +

geom_errorbar(mapping = aes(ymin = mean, ymax=ymax, width = 0.25), position = position_dodge(0.9)) + 
xlab("Light condition") +
ylab("Hypocotyl orientation (°)\n relative to upward direction (0°)") +
scale_y_continuous(breaks = c(30, 0, -30, -60, -90)) +
scale_x_discrete(labels = c("Dark", "Lateral white light")) +
scale_fill_manual(labels = c("0 µM", "5 µM"), values = c("white", "red"), name = "NPA conc.")
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